10³ Segment MEMS Deformable-Mirror Process Development

NASA Phase I SBIR - NNX09CE01P

Michael A. Helmbrecht, Ph.D. Iris AO, Inc.

www.irisao.com michael.helmbrecht@irisao.com info@irisao.com

9th Annual Mirror Technology Days

June 16th - 18th, 2009

Precision DMs & Electronics

Compact

Robust

Easy to Use

Outline

- Iris AO Segmented DM Background
- DM Scaling Development
- NASA Phase I SBIR Progress
- (Some of the) Challenges for 10³ segments

S37-X: A solid foundation

Segmented MEMS DM Schematic

- Robust single-crystalsilicon assembled mirror surface stays flat (0.56 nm/°C PV)
 - Enables protected silver and dielectric coatings
- Temperatureinsensitive bimorphs elevate mirror above substrate (14 nm/°C, σ=0.8 nm/°C)
- Piston/tip/tilt electrostatic actuation
- 2.3 kHz frequency response
 - 170/200 µs rise/fall times, 10-90%

Smart Driver II Electronics

128 Channels

- High resolution
 - 14 bit, 200 V
- Low Noise
 - < 4mV rms</p>
- Factory calibrated

- Simple USB interface (150 Hz frame rate)
 - Scales to > 10k channels
- High-speed interface (6 kHz frame rate)
 - Scalable to > 4k channels
- Frame rates of 35 kHz supported
 - Direct drive with LVDS

Closed-Loop Flattened DM

Mag: 1.4 X

Mode: PSI

Surface Data

Date: 06/20/2008

Time: 16:19:29

Surface Statistics:

Ra: 6.04 nm Rq: 7.74 nm Rz: 55.73 nm Rt: 69.79 nm

Set-up Parameters:

Size: 736 X 480 Sampling: 6.06 um

Processed Options:

Terms Removed:

Tilt

Filtering:

None

Title: FSC37-01-07-0614

Note: Closed-Loop Flattened

June 18th, 2009

We expect 1-3 nm rms end of June 2009

Factory Calibration: Open-Loop Positioning Capability

Scaling up, step by step

S163-X Actuator Chip

13.4 mm

925 Segment Path Finder

20.088 mm

High-Cost MEMS Development with SBIR Funding

- MEMS has high development costs
- Leverage multiple SBIRs from various agencies
 - Multiple projects per wafer
- Develop DM by fabricating in house
 - Better control
 - Less mistakes
 - Greater flexibility
 - Dramatically lower development costs
 - No risk of getting dumped on prom night

Multi-project 6" Wafer NIH & NASA SBIRs

DM Development - Pre NASA I (Jan 09)

* Funding by the NIH/NEI

June 18th, 2009

DM Development - Post NASA I (July 09)

* Funding by the NIH/NEI

DM Development – Post NASA II (If Awarded)

* Funding by the NIH/NEI

June 18th, 2009

Phase I Progress

- Electrical yield of actuator wafers determined
 - >98% for FIRST process run of wired design
 - S37-X actuators as test coupons
 - Failures believed to be pinholes in a thin passivation layer
 - Wafers fabricated in-house
- Actuator wafer (6") bow reduced ~3.5X (-13.2 μm to 3.5 μm)
 - Achieved by better stress matching
- DMs tested for leakage currents under vacuum
 - No noticeable change
 - Measured down to 10's pA
- Mirror-wafer layout and fabrication started
 - ~50% completed

Some challenges for 10³ Segment DMs

- Managing 3000 interconnects
 - Need reliable and small form factor cabling that can handle 200 V
 - Ceramic IC packaging and wirebonding supports 3000 segments with existing technology
- Chip flatness after release and packaging
 - Ceramic PGA packages can easily have 50µm/25mm camber (saddle shape)
 - Chips flat prior to release will bow after removing sacrificial layers
 - Better stress matching after release
 - Thicker substrates (e.g. 1 mm instead of 625 μm)
- Chip yield scales horribly: Segment_Yieldnum segments
 - Tighter wiring pitch may result in reduced electrical yield
 - Will determine if the yield is reduced because of breakdown
 - Track down failure modes systematically
 - requires extensive testing

Summary

- S37-X DM is a solid foundation from which to scale
- Leveraging different SBIRs will allow Iris AO to methodically scale up segment count
- Promising Phase I preliminary results
 - Good electrical yield for first fabrication run
 - Reduced wafer bow
 - Vacuum operation verified
- Lots of fun challenges for 10³ segment DMs
 - Solvable engineering problems

Acknowledgements

Funding Sources

- NASA Phase II SBIR, (Extreme Precision DM Testing and Development)
 - NNG07CA06C

- Center for Adaptive Optics (DM Process Development)
 - National Science Foundation Science and Technology: No. AST 9876783

- National Eye Institute Phase II SBIR (DM Process Development)
 - 2 R44 EY015381-02A1

- US Air Force Phase II SBIR (DM Control)
 - FA8650-04-M-6518

- National Science Foundation Phase II SBIR (Ancillary Process Development)
 - DMI-0522321

R&D Fabrication Facility

Berkeley Microfabrication Laboratory

Research Collaboration

Berkeley Sensor & Actuator Center